Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34883741

RESUMO

We studied the kinetics of swelling in high-χ lamellar-forming poly(styrene)-block- poly(lactic acid) (PS-b-PLA) block copolymer (BCP) by varying the heating rate and monitoring the solvent vapour pressure and the substrate temperature in situ during solvo-thermal vapour annealing (STVA) in an oven, and analysing the resulting morphology. Our results demonstrate that there is not only a solvent vapour pressure threshold (120 kPa), but also that the rate of reaching this pressure threshold has a significant effect on the microphase separation and the resulting morphologies. To study the heating rate effect, identical films were annealed in a tetrahydrofuran (THF) vapour environment under three different ramp regimes, low (rT<1 °C/min), medium (24 °C/min), for 60, 90 and 120 min, respectively, while the solvent vapour pressure and the substrate temperature were measured in real time. The translational order improved significantly with increasing the heating rate. The solvent mass uptake calculated for the different ramp regimes during annealing is linearly proportional to time, indicating that the swelling kinetics followed Case II diffusion. Two stages of the swelling behaviour were observed: (i) diffusion at the initial stages of swelling and (ii) stress relaxation, controlled at later stages. Films with a faster rate of increase in vapour pressure (rP>2 kPa/min) reached the pressure threshold value at an early stage of the swelling and attained a good phase separation. According to our results, highly ordered patterns are only obtained when the volume fraction of the solvent exceeds the polymer volume fraction, i.e., (φs≥φp), during the swelling process, and below this threshold value (φs=0.5), the films did not obtain a good structural order, even at longer annealing times.

2.
Macromolecules ; 54(3): 1203-1215, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-34276069

RESUMO

The self-assembly of ultra-high molecular weight (UHMW) block copolymers (BCPs) remains a complex and time-consuming endeavor owing to the high kinetic penalties associated with long polymer chain entanglement. In this work, we report a unique strategy of overcoming these kinetic barriers through precision solvent annealing of an UHMW polystyrene-block-poly(2-vinylpyridine) BCP system (M w: ∼800 kg/mol) by fast swelling to very high levels of solvent concentration (ϕs). Phase separation on timescales of ∼10 min is demonstrated once a thickness-dependent threshold ϕs value of ∼0.80-0.86 is achieved, resulting in lamellar feature spacings of over 190 nm. The threshold ϕs value was found to be greater for films with higher dry thickness (D 0) values. Tunability of the domain morphology is achieved through controlled variation of both D 0 and ϕs, with the kinetically unstable hexagonal perforated lamellar (HPL) phase observed at ϕs values of ∼0.67 and D 0 values of 59-110 nm. This HPL phase can be controllably induced into an order-order transition to a lamellar morphology upon further increase of ϕs to 0.80 or above. As confirmed by grazing-incidence small-angle X-ray scattering, the lateral ordering of the lamellar domains is shown to improve with increasing ϕs up to a maximum value at which the films transition to a disordered state. Thicker films are shown to possess a higher maximum ϕs value before transitioning to a disordered state. The swelling rate is shown to moderately influence the lateral ordering of the phase-separated structures, while the amount of hold time at a particular value of ϕs does not notably enhance the phase separation process. These large period self-assembled lamellar domains are then employed to facilitate pattern transfer using a liquid-phase infiltration method, followed by plasma etching, generating ordered, high aspect ratio Si nanowall structures with spacings of ∼190 nm and heights of up to ∼500 nm. This work underpins the feasibility of a room-temperature, solvent-based annealing approach for the reliable and scalable fabrication of sub-wavelength nanostructures via BCP lithography.

3.
ACS Appl Mater Interfaces ; 12(20): 23410-23416, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32374582

RESUMO

A surface-enhanced Raman spectroscopy sensing template consisting of gold-covered nanopillars is developed. The plasmonic slab consists of a perforated gold film at the base of the nanopillars and a Babinet complementary dot array on top of the pillars. The nanopillars were fabricated by the incorporation of an iron salt precursor into a self-assembled block copolymer thin film and subsequent reactive ion etching. The preparation is easy, scalable, and cost-effective. We report on the increase in surface-enhanced Raman scattering efficiency for smaller pillar heights and stronger coupling between the dot array and perforated gold film with average enhancement factors as high as 107. In addition, the block copolymer-derived templates show an excellent relative standard deviation of 8% in the measurement of the Raman intensity. Finite difference time domain simulations were performed to investigate the nature of the electromagnetic near-field enhancement and to identify plasmonic hot spots.

4.
Phys Chem Chem Phys ; 19(31): 20412-20419, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28731101

RESUMO

Microwave annealing has emerged as an alternative to traditional thermal annealing approaches for optimising block copolymer self-assembly. A novel sample environment enabling small angle X-ray scattering to be performed in situ during microwave annealing is demonstrated, which has enabled, for the first time, the direct study of the effects of microwave annealing upon the self-assembly behavior of a model, commercial triblock copolymer system [polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene]. Results show that the block copolymer is a poor microwave absorber, resulting in no change in the block copolymer morphology upon application of microwave energy. The block copolymer species may only indirectly interact with the microwave energy when a small molecule microwave-interactive species [diethylene glycol dibenzoate (DEGDB)] is incorporated directly into the polymer matrix. Then significant morphological development is observed at DEGDB loadings ≥6 wt%. Through spatial localisation of the microwave-interactive species, we demonstrate targeted annealing of specific regions of a multi-component system, opening routes for the development of "smart" manufacturing methodologies.

5.
Nano Lett ; 17(5): 2973-2978, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28379701

RESUMO

Nanostructured surfaces are common in nature and exhibit properties such as antireflectivity (moth eyes), self-cleaning (lotus leaf), iridescent colors (butterfly wings), and water harvesting (desert beetles). We now understand such properties and can mimic some of these natural structures in the laboratory. However, these synthetic structures are limited since they are not easily mass produced over large areas due to the limited scalability of current technologies such as UV-lithography, the high cost of infrastructure, and the difficulty in nonplanar surfaces. Here, we report a solution process based on block copolymer (BCP) self-assembly to fabricate subwavelength structures on large areas of optical and curved surfaces with feature sizes and spacings designed to efficiently scatter visible light. Si nanopillars (SiNPs) with diameters of ∼115 ± 19 nm, periodicity of 180 ± 18 nm, and aspect ratio of 2-15 show a reduction in reflectivity by a factor of 100, <0.16% between 400 and 900 nm at an angle of incidence of 30°. Significantly, the reflectivity remains below 1.75% up to incident angles of 75°. Modeling the efficiency of a SiNP PV suggests a 24.6% increase in efficiency, representing a 3.52% (absolute) or 16.7% (relative) increase in electrical energy output from the PV system compared to AR-coated device.

6.
ACS Appl Mater Interfaces ; 8(12): 8295-304, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26950246

RESUMO

Solvothermal vapor annealing (STVA) was employed to induce microphase separation in a lamellar forming block copolymer (BCP) thin film containing a readily degradable block. Directed self-assembly of poly(styrene)-block-poly(d,l-lactide) (PS-b-PLA) BCP films using topographically patterned silicon nitride was demonstrated with alignment over macroscopic areas. Interestingly, we observed lamellar patterns aligned parallel as well as perpendicular (perpendicular microdomains to substrate in both cases) to the topography of the graphoepitaxial guiding patterns. PS-b-PLA BCP microphase separated with a high degree of order in an atmosphere of tetrahydrofuran (THF) at an elevated vapor pressure (at approximately 40-60 °C). Grazing incidence small-angle X-ray scattering (GISAXS) measurements of PS-b-PLA films reveal the through-film uniformity of perpendicular microdomains after STVA. Perpendicular lamellar orientation was observed on both hydrophilic and relatively hydrophobic surfaces with a domain spacing (L0) of ∼32.5 nm. The rapid removal of the PLA microdomains is demonstrated using a mild basic solution for the development of a well-defined PS mask template. GISAXS data reveal the through-film uniformity is retained following wet etching. The experimental results in this article demonstrate highly oriented PS-b-PLA microdomains after a short annealing period and facile PLA removal to form porous on-chip etch masks for nanolithography application.

7.
J Mater Sci Mater Med ; 26(2): 120, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25677116

RESUMO

Neuroprosthetic technologies for therapeutic neuromodulation have seen major advances in recent years but these advances have been impeded due to electrode failure or a temporal deterioration in the device recording or electrical stimulation potential. This deterioration is attributed to an intrinsic host tissue response, namely glial scarring or gliosis, which prevents the injured neurons from sprouting, drives neurite processes away from the neuroelectrode and increases signal impedance by increasing the distance between the electrode and its target neurons. To address this problem, there is a clinical need to reduce tissue encapsulation of the electrodes in situ and improve long-term neuroelectrode function. Nanotopographical modification has emerged as a potent methodology for the disruption of protein adsorption and cellular adhesion in vitro. This study investigates the use of block copolymer self-assembly technique for the generation of sub-20 nm nanowire features on silicon substrates. Critically, these nanostructures were observed to significantly reduce electrical impedance and increase conductivity. Human neuroblastoma SH-SY5Y cells cultured on nanowire substrates for up to 14 days were associated with enhanced focal adhesion reinforcement and a reduction in proliferation. We conclude that nanowire surface modulation may offer significant potential as an electrode functionalization strategy.


Assuntos
Microeletrodos , Nanofios/química , Nanofios/ultraestrutura , Neurônios/citologia , Neurônios/fisiologia , Silício/química , Linhagem Celular , Sobrevivência Celular/fisiologia , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Teste de Materiais
8.
Langmuir ; 30(35): 10728-39, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25137566

RESUMO

Microwave annealing is an emerging technique for achieving ordered patterns of block copolymer films on substrates. Little is understood about the mechanisms of microphase separation during the microwave annealing process and how it promotes the microphase separation of the blocks. Here, we use controlled power microwave irradiation in the presence of tetrahydrofuran (THF) solvent, to achieve lateral microphase separation in high-χ lamellar-forming poly(styrene-b-lactic acid) PS-b-PLA. A highly ordered line pattern was formed within seconds on silicon, germanium and silicon on insulator (SOI) substrates. In-situ temperature measurement of the silicon substrate coupled to condition changes during "solvo-microwave" annealing allowed understanding of the processes to be attained. Our results suggest that the substrate has little effect on the ordering process and is essentially microwave transparent but rather, it is direct heating of the polar THF molecules that causes microphase separation. It is postulated that the rapid interaction of THF with microwaves and the resultant temperature increase to 55 °C within seconds causes an increase of the vapor pressure of the solvent from 19.8 to 70 kPa. This enriched vapor environment increases the plasticity of both PS and PLA chains and leads to the fast self-assembly kinetics. Comparing the patterns formed on silicon, germanium and silicon on insulator (SOI) and also an in situ temperature measurement of silicon in the oven confirms the significance of the solvent over the role of substrate heating during "solvo-microwave" annealing. Besides the short annealing time which has technological importance, the coherence length is on a micron scale and dewetting is not observed after annealing. The etched pattern (PLA was removed by an Ar/O2 reactive ion etch) was transferred to the underlying silicon substrate fabricating sub-20 nm silicon nanowires over large areas demonstrating that the morphology is consistent both across and through the film.

9.
Langmuir ; 28(37): 13503-11, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22924663

RESUMO

We use atomic force microscopy (AFM) and hot tip AFM (HT-AFM) to thermophysically characterize a 30 nm thick film of poly(styrene-block-ethylene oxide), PS-b-PEO, and to modify its lamellar patterns having spacing of 39 ± 3 nm. AFM tip scans of the polymer film induce either abrasive surface patterns or nanoscale ripples, which depend upon the tip force, temperature, and number of scans. The evolution of the lamellar patterns is explained by the polymer film molecular structure and mode I crack propagation in the polymer combined with the stick-and-slip behavior of the AFM tip. The HT-AFM measurements at various tip-sample temperatures and scanning speeds yield several thermophysical quantities: the PEO melting temperature of 54 ± 12 °C, the PS glass transition temperature of 54 ± 12 °C, the PS-b-PEO specific heat of 3.6 ± 2.7 J g(-1) K(-1), the PEO melting enthalpy of 111 ± 88 J g(-1), and the free energy of Helmholtz for PEO unfolding (and melting) of 10(-20) J nm(-2). These quantities are obtained for PS-b-PEO volumes of 30,000 nm(3), which correspond to 30 ag of the polymer.


Assuntos
Polietilenoglicóis/química , Poliestirenos/química , Temperatura , Microscopia de Força Atômica
10.
ACS Nano ; 5(6): 4617-23, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21612306

RESUMO

We studied the kinetics of nanopattern evolution in (polystyrene-b-polyethylene oxide) diblock copolymer thin films. Using scanning force microscopy, a highly unexpected cylindrical flipping of morphology from normal to parallel to the film plane was detected during solvent annealing of the film (with average thickness of 30 nm) at high vapor pressure. Using an in situ time-resolved light scattering device combined with an environmental cell enabled us to obtain kinetic information at different vapor pressures. The data indicated that there is a threshold value for the vapor pressure necessary for the structural transition. We propose a swelling and deswelling mechanism for the orientation flipping of the morphology. The cyclic transition occurs faster in thick films (177 nm) where the mass uptake and solvent volume fraction is smaller and therefore the driving force for phase separation is higher. We induced a stronger segregation by confining the chains in graphoepitaxially patterned substrates. As expected, the cyclic transition occurred at higher rate. Our work is another step forward to understanding the structure evolution and also controlling the alignment of block copolymer nanocylinders independently of thickness and external fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...